3 research outputs found

    Multi-objective NSGA-II based community detection using dynamical evolution social network

    Get PDF
    Community detection is becoming a highly demanded topic in social networking-based applications. It involves finding the maximum intraconnected and minimum inter-connected sub-graphs in given social networks. Many approaches have been developed for community’s detection and less of them have focused on the dynamical aspect of the social network. The decision of the community has to consider the pattern of changes in the social network and to be smooth enough. This is to enable smooth operation for other community detection dependent application. Unlike dynamical community detection Algorithms, this article presents a non-dominated aware searching Algorithm designated as non-dominated sorting based community detection with dynamical awareness (NDS-CD-DA). The Algorithm uses a non-dominated sorting genetic algorithm NSGA-II with two objectives: modularity and normalized mutual information (NMI). Experimental results on synthetic networks and real-world social network datasets have been compared with classical genetic with a single objective and has been shown to provide superiority in terms of the domination as well as the convergence. NDS-CD-DA has accomplished a domination percentage of 100% over dynamic evolutionary community searching DECS for almost all iterations

    Friendship prediction in social networks using developed extreme learning machine with Kernel reduction and probabilistic calculation

    No full text
    The social network remains a highly dynamic object. Friendship prediction presents a significant problem in the research in network application in general and in social networking applications in particular. It involves analyzing an existing network graph and predicting more links inside the graph that were not identified before. Various models and approaches were developed for this purpose. Similarity-based models were used extensively, mainly they suffered from non-capability of handling the changing nature of the graph. Other models have supervised models that require training on labelled data. However, they need the extraction of many features to achieve satisfying performance. This work provides a novel implicit link prediction probabilistic reduced kernel extreme learning machine named ILP-PRKELM. Unlike the traditional supervised model of link prediction, ILP-PRKELM is attributed to the capability of achieving absolute accuracy with less number of features. Experimental results showed the superiority of ILP-PRKELM with an accomplished accuracy of 84.6 and 78.6 for Last.fm and Douban respectively, which is equivalent to 2% improved accuracy over the benchmarks
    corecore